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Comment on the Deformation Potential in Ultrasonic Attenuation*
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It is pointed out that Kleinman’s free-electron deformation-potential approximation is not equivalent to
the method used by Pippard in calculating ultrasonic attenuation in metals. The methods are compared in
terms of free-electron and band-structure contributions to the deformation energy.

FREE-ELECTRON deformation potential

(FED) approximation was used by Kleinman!
in calculating the ultrasonic attenuation for metals
having certain model Fermi surfaces. In his paper, he
stated that this approximation is equivalent to the
method used by Pippard? in deriving general expressions
for the attenuation. The purpose of this paper is to
point out that Pippard did not employ this approxima-
tion, and that Pippard’s method is consistent with
the correct formulation of the deformation potential
outlined by Kleinman in an appendix.

In order to clarify the sometimes confusing terminol-
ogy used by the different authors, a schematic rep-
resentation of an energy band for conduction electrons
is presented in Fig. 1 with important features labeled.
E(k) is the band energy in the unstrained metal, while
E'(k) is the band energy in the strained metal. In
general, one expects £’'(k) to be different from E (k)
because of the changes in relative position of the ions
as well as the change in density resulting from an
arbitrary strain e;. In the strained metal, the Fermi
energy Ep’ for the equilibrium electron distribution
may be different from the Fermi energy Er in the
unstrained metal, consequently the Fermi wave vector
kr may change by Akp, which varies with crystal
direction.
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F1c. 1. Schematic representation of an energy band in a metal.
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Consider an electron initially on the Fermi surface
in the unstrained metal (point A). Pippard showed that
a sudden strain (i.e., one which takes place in a time
short compared with the relaxation time 7) shifts the
electron wave vector by Ak;= —¢;;k;. He called this an
adiabatic change in % because the electron is not in
thermal equilibrium with the lattice. The electron ends
up at B in Fig. 1, with its energy increased by (9£./dk)
-Ak+AEps(Bp+AK). The first term is what Kleinman
called the free-electron deformation term. It is the
result of viewing the electron from a strained reference
frame. The second results from the shift in the energy
band when the lattice is strained.

After a time 7, the electron at B relaxes back to the
equilibrium distribution at C with energy Er’; thus the
excitation energy is

oE
AL = —I;-Ak+AEBS(kF+Ak)—AEF, (1)
0
where

oE
AEF=<—-Ak +{AEgs)rs, (2)
dk Fs
and ( )rs indicates an average over the Fermi surface.
However, one can also describe the Fermi energy shift
in terms of Akp, the shift in Fermi wave vector normal
to the Fermi surface:

IE
ABy=— Ak AEgs(kr-+8k), ©)
so that
JIE
AE= —- (Ak—Aky), @)
ok
since

AEBs(kF+Ak) =AEBS(kF+AkF)

to first order. Pippard computes the excitation energy
from

AEP=1hv- (Ak—Aky), (5)

which is identical with Eq. (4) to this order. Note that
AEP is just the difference in energies at B? and CP? in
Fig. 1, which might lead one to believe that changes in
the energy band caused by strain have been ignored.
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However, all such effects are included in Pippard’s
fitting parameter K,;, where

Akp=ne;K;;(kr), (6)

and n is a unit vector perpendicular to the Fermi
surface. One could calculate K;; from first principles
along the lines suggested by Kleinman in his appendix,
or one might measure it with the de Haas—van Alphen
effect in crystals with known strains.

Kleinman has suggested a model for studying
deformation-potential effects when the actual deforma-
tion potential is not known. He makes use of parameters
which may be available from experiments or ordinary
band calculations, kr and vr, and retains only the first
term on the right-hand side of Eq. (1). With Pippard,
he considers the excited electron to be at B? with
energy (dE/0k)-Ak. However, instead of treating the
Fermi-surface shift as an unknown parameter, he
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computes it from Eq. (2). Since the second term
vanishes for the FED model, he finds

AEpFEP=((JE/9K) - AK)xs, (7

indicated by C¥ in Fig. 1.

Using (1), (2), and (7) we find that the error which
results from the FED approximation is

AE—AEFEP = AE s(kp) —(AEpg)rs. 8

In this case of metals for which ky and vz are known,
one could study discrepancies between measured
attenuation and that calculated using the FED model
to learn the relative importance of the error described
by Eq. (8) for the electrons which dominate the
attenuation.

I should like to express my appreciation to Professor
A. B. Pippard and to Professor L. Kleinman for helpful
discussions of their respective papers.
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The determination by the internal-conversion method of the fractional charge-radius change éR/R for
the 23.9-keV M1 transition in 1Sn is reexamined. A modified $R/R value is obtained; this is compared with
values otherwise determined, and some implications of these comparisons are derived.

N a letter! on chemical effects on valence-electron
internal conversion of the 23.9-keV magnetic dipole
transition in "®Sn, and on interpretation of the M&ss-
bauer isomer shift for that transition, it was reported
that the ratio of O-shell-to-N;-shell conversion is
(0.1084-0.004) when the source is in the form of white
tin metal and (0.0744-0.004) when in the form SnO,.
The derivation from these experimental results of the
change in charge radius of “Sn upon excitation needs
modifications which produce effects on the magnitude
of 6R/R but not on its sign. After rederiving the result
for 6R/R, we comment on the results implied for the
internal-conversion experiment by other interpretations
of the isomer shift.
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First, an error was made in Ref. 1 in the values of s
electron density at the nucleus.? From the results of
the Hartree-Fock-Slater calculations of Herman and
Skillman,® we find the nonrelativistic electron density
at the nucleus for the two 4s electrons to be

1‘1/43(0) l 2= 320.8(1()“3 .

The experimental results® then imply that between §-Sn
and SnO, the change in valence electron density
(equivalent nonrelativistic density) at the nucleus is

(|¥56(0) | gosn?— | ¥55(0) | sn0,?) = (10.941.8)ag?,

where the uncertainty shown is due to the experimental
uncertainty and does not include any contribution from
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thank Dr. F. Pleiter and Dr. Hans Postma for calling to our
attention the possibility of such an error.
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